If everybody in the world had one dollars worth of bit coin bitcoin

If all the bit coin in the world were owned by all the people of the world in an equal quantity, then each bit coin would be worth approximately $430 if each person owned one dollar’s Worth of Bitcoin, almost double the current price.

The simple math is $6 billion ($1 of BTC for each person) divided by say around 13 million, the number of the coins currently mined. So many people live on less than or equal to a dollar per day.

Do you want to own a dollar of Bitcoin or $245.00 of it?

Never before in human history, has there ever been a global currency that could be immediately transferred across the globe.

Never before in human history, has there ever been the opportunity to transfer wealth into the hands of “the people and away from oligarchs bankers and the elite.

However, we must act now to secure our share in the future. That means spreading the word to all the people of the world.

The next bit coin bubble, will either be created by a mass revolution of all the people of the planet fighting for the small share of that coin or banks will seize the opportunity first.

 

Share
Posted in Uncategorized | Leave a comment

Tachyon Star Love – The New Pop Album by Parker Emmerson

Share
Posted in Uncategorized | Leave a comment

The real deal on DOGE – Double pan and handle LTC and USD

Get DOGE today. A pan and handle is forming on Doge in terms of LTC and USD over different periods of time. The next couple weeks will tell, but if DOGE outperforms these two over the next couple weeks, look for a massive surge in Doge price.
some text

some text
 

https://coinreport.net/cryptsy-debitway-partner-foster-altcoin-trading/

 

News like THIS does not hurt either. With the alt coin market gaining traction for trading more regularly and with more liquidity, I’m gunna go ahead and say that DOGE is a buy.

The risk that doge will decrease is substantial, but with Bitcoin’s bouncing of the 266 low, you could look for stability there, and gain faith in the entire alt coin market.

Share
Posted in Uncategorized | Leave a comment

You will want to read the following for starters on understanding \ bitcoin cryptography.

 

  Some Bitcoin for Thought


You will want to read the following for starters on understanding bitcoin \
cryptography.
https : // en.bitcoin.it/wiki/Secp256k1
http : // en.wikisource.org/wiki/NIST_Koblitz _Curves _Parameters
The naive way to break an encryption algorithm is to brute –
force the key.The complexity of that attack is 2 n,
where n is the key length.All cryptanalytic attacks can be viewed as \
shortcuts to that method.And since the efficacy of a brute –
force attack is a direct function of key length,
these attacks effectively shorten the key.So if, for example,
the best attack against DES has a complexity of 239,
that effectively shortens DES⎟ s 56 –
bit key by 17 bits.That⎟ s a really good attack, by the way.Right now the \
upper practical limit on brute force is somewhere under 80 bits.However, \
using that as a guide gives us some indication as to how good an attack has \
to be to break any of the modern algorithms.These days, encryption algorithms \
have, at a minimum, 128 –
bit keys.That means any NSA cryptoanalytic breakthrough has to reduce the \
effective key length by at least 48 bits in order to be practical.
http : // en.wikipedia.org/wiki/Elliptic_Curve _DSA
http : //
www.reddit.com/r/Bitcoin/comments/1 nvsn7/
elliptic_curve _secp256k1 _vulnerability/
http : // blog.ezyang.com/2011/06/the – cryptography – of – bitcoin/
http : //
bitcoinmagazine.com/6021/bitcoin – is – not – quantum – safe – and – how –
we – can – fix/
http : // en.wikipedia.org/wiki/Cryptographic_hash _function
http : // mathworld.wolfram.com/EllipticCurve.html
We can liken the finding of bitcoins to someone firing at a target, and they \
are force to fire at the target while wearing a blind fold.

We can make the statistical probability of hitting the target greater if we \
either

1. Take off the blind fold (very hard)
2. Make the target bigger (easier)
3. Create a net so that we hit the target and drag it back to us so that it’ \
s easier to hit.
Making target bigger :
Say we know what the elliptical curve that bitcoin uses, we can can create \
more facets to it.
We can embed different functions within it; reduce it to other variable \
entirely.
Then, we have better ways of converting to potential solutions to the \
equation.
We need to know what the field characteristic of the bitcoin elliptical curve \
is.
http : //
bitcoin.stackexchange.com/questions/21907/what – does – the – curve – used –
in – bitcoin – secp256k1 – look – like
http : // www.secg.org/index.php?action = secg, docs_secg
Actually secp256k1 is defined over a Galois field, not a ring of integers \
modulo a prime.Now, it turns out that the secp256k1 field is a prime field \
and therefore isomorphic to a ring of integers modulo a prime, but this is \
not true for all ECDSA curves– in fact, the “sectXXXyZ” curves (for which \
much faster hardware exists than the “secpXXXyZ” curves) cannot be described \
using rings of integers.See this page for an explanation of why every finite \
field has a GF representation but only the prime fields have a a Z/
pZ representation :

en.wikipedia.org/wiki/Finite_field # Statement
See : Fp2 (via quadratic residues modulo p) –
Not wholly true. Not necessarily correct.
Here, phenomenological velocity can be used.
Please research what is the relationship between Fp2 and bitcoin secp256k1?
http : //
www.reddit.com/r/Bitcoin/comments/1 nvsn7/
elliptic_curve _secp256k1 _vulnerability/
“On their protocol specification wiki they say that in their scripts they \
provide hexidecimal decompressed x,y coordinates (though these are really r,s \
values)”
So, if x and y are actually r and s, then we can boil either down to only one \
variable. We can actually force r to be purely in terms of s by definition.
But what are r and s?
http : //
bitcoinmagazine.com/7781/satoshis – genius – unexpected – ways – in – which –
bitcoin – dodged – some – cryptographic – bullet/
Thus, elliptic curve cryptography uses an elliptic curve with two \
modifications.First,
the equation is now y2 =
x3 + ax + b +
kp, where k can be any integer and p is some large prime number (a \
parameter of the curve alongside a and b).Second, x and y must be \
integers.Although the resulting set is hardly a ⎥curve⎠, surprisingly enough \
the same math still works, and the restriction to integers avoids rounding \
errors.
y^2 = x^3 + ax + b + kp
In general, however, the curves fall into two categories :
⎥pseudorandom⎠ curves and Koblitz curves.In a pseudorandom curve, the \
parameters a and b are chosen by a specified algorithm (essentially a hash) \
from a certain ⎥seed⎠.For secp256r1,
the standard 256 –
bit pseudorandom curve, the seed is \
c49d360886e704936a6678e1139d26b7819f7e90, giving rise to the parameters :
Vitalik Buterin : Fortunately, Bitcoin does not use pseudorandom curves;
Bitcoin uses Koblitz curves.In Bitcoin⎟ s secp256k1, the parameters are :
p = 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
a = 0
b = 7

y^2 == x^3 + 0 x + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
This is the base equation for bitcoin elliptical curves from what Vitalik \
says, and Vitalik is the top notch #1 programmer in the bizzz.                \
\

Theta BASE
y = height of cone = h = Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π)
x = base of cone = Sqrt[(r^2 – η^2)] = (2 π r – r θ)/(2 π)
y^2 == x^3 + 0 x + 7 +
k 1157920892373161954235709850086879078532699846656405640394575840079088346\
71663 =

(Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2 == ((2 π r – r θ)/(2 π))^3 +
0 (2 π r – r θ)/(2 π) + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 1157920892373161954235709850086879078532699846656405640394575840079088346\
71663 k + (2 π r – r θ)^3/(8 π^3)
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3), r]
{{r -> (2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) + (4 2^(
1/3) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3)) + (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413253317\
30501069312 k π^9 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239759951\
91503207936 k π^8 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549699939\
89379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033133293\
26252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887424984\
97344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774849969\
9468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145708308\
289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132\
5331730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397\
5995191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496\
9993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331\
3329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874\
2498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748\
499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457\
08308289079208 k π^3 θ^6)^2))^(
1/3)/(3 2^(1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))}, {r -> (
2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 + I Sqrt[3]) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ +
6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(
1/3)) – ((1 – I Sqrt[3]) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3))/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))}, {r -> (
2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 – I Sqrt[3]) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ +
6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(
1/3)) – ((1 + I Sqrt[3]) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3))/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))}}
But what is zero? Is it really so nothing?
Usefulness : 0 = 2 π r – 2 π x – θ r
0 = 2 π r – 2 π x – θ r
So, let’ s try that again :
(Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2 == ((2 π r – r θ)/(2 π))^3 +
0 (2 π r – r θ)/(2 π) + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3), r]
(Sqrt[4 π r^2 θ – r^2 θ^2]/(
2 π))^2 == ((2 π r – r θ)/(2 π))^3 + (2 π r – 2 π x – θ r) (2 π r – r θ)/(
2 π) + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 1157920892373161954235709850086879078532699846656405640394575840079088346\
71663 k + (2 π r – r θ)^3/(8 π^3) + ((2 π r – r θ) (2 π r – 2 π x – r θ))/(
2 π)
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3) + ((2 π r – r θ) (2 π r – 2 π x – r θ))/(
2 π), r]
{{r -> -((2 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))) – (2^(
1/3) (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3)))/(3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 –
30720 π^10 θ^2 – 20736 π^8 x θ^2 – 69120 π^9 x θ^2 +
242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3))^3))^(1/3)) +
1/(3 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413253317\
30501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239759951\
91503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549699939\
89379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033133293\
26252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887424984\
97344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774849969\
9468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145708308\
289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132\
5331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397\
5995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496\
9993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331\
3329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874\
2498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748\
499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457\
08308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))^3))^(
1/3)}, {r -> -((2 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3))) + ((1 +
I Sqrt[3]) (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)))/(3 2^(
2/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 –
30720 π^10 θ^2 – 20736 π^8 x θ^2 – 69120 π^9 x θ^2 +
242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3))^3))^(1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 – I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))^3))^(
1/3)}, {r -> -((2 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3))) + ((1 –
I Sqrt[3]) (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)))/(3 2^(
2/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 –
30720 π^10 θ^2 – 20736 π^8 x θ^2 – 69120 π^9 x θ^2 +
242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3))^3))^(1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 + I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6 +
,((-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 – 8192 π^12 – 18432 π^11 x + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ + 12288 π^10 θ + 24576 π^11 θ + 9216 π^9 x θ +
55296 π^10 x θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 – 6144 π^8 θ^2 – 27648 π^9 θ^2 – 30720 π^10 θ^2 –
20736 π^8 x θ^2 – 69120 π^9 x θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 + 9216 π^7 θ^3 + 24576 π^8 θ^3 + 20480 π^9 θ^3 +
18432 π^7 x θ^3 + 46080 π^8 x θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 – 4992 π^6 θ^4 – 10752 π^7 θ^4 – 7680 π^8 θ^4 –
8064 π^6 x θ^4 – 17280 π^7 x θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 + 1152 π^5 θ^5 + 2304 π^6 θ^5 + 1536 π^7 θ^5 +
1728 π^5 x θ^5 + 3456 π^6 x θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6 – 96 π^4 θ^6 – 192 π^5 θ^6 – 128 π^6 θ^6 –
144 π^4 x θ^6 – 288 π^5 x θ^6)^2 +
4 (-4 (8 π^4 – 4 π^2 θ – 8 π^3 θ + π θ^2 + 2 π^2 θ^2)^2 –
24 (2 π^4 x – π^3 x θ) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3))^3))^(
1/3)}}
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3) + ((2 π r – r θ) (2 π r – 2 π x – r θ))/(
2 π), k]
{{k -> (-56 π^3 – 16 π^4 r^2 – 8 π^3 r^3 + 16 π^4 r x + 8 π^2 r^2 θ +
16 π^3 r^2 θ + 12 π^2 r^3 θ – 8 π^3 r x θ – 2 π r^2 θ^2 –
4 π^2 r^2 θ^2 – 6 π r^3 θ^2 +
r^3 \
θ^3)/(926336713898529563388567880069503262826159877325124512315660672063270677\
373304 π^3)}}
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3) + ((2 π r – r θ) (2 π r – 2 π x – r θ))/(
2 π), k]
{{k -> (-56 π^3 – 16 π^4 r^2 – 8 π^3 r^3 + 16 π^4 r x + 8 π^2 r^2 θ +
16 π^3 r^2 θ + 12 π^2 r^3 θ – 8 π^3 r x θ – 2 π r^2 θ^2 –
4 π^2 r^2 θ^2 – 6 π r^3 θ^2 +
r^3 \
θ^3)/(926336713898529563388567880069503262826159877325124512315660672063270677\
373304 π^3)}}
c := 2.99792458*(10^8)
Solve[(Sqrt[r Sqrt[1 – (v)^2/c^2]] Sqrt[θ/Sqrt[1 – (v)^2/c^2]] Sqrt[
4 π r – r θ])/(2 π) == r Sin[β], v]
{{v -> -((
1. Sqrt[-1.12941*10^18 θ + 8.98755*10^16 θ^2 + 3.54814*10^18 Sin[β]^2])/
Sqrt[-12.5664 θ + θ^2 + 39.4784 Sin[β]^2])}, {v ->
Sqrt[-1.12941*10^18 θ + 8.98755*10^16 θ^2 + 3.54814*10^18 Sin[β]^2]/
Sqrt[-12.5664 θ + θ^2 + 39.4784 Sin[β]^2]}}
Solve[(4 π r^2 θ – r^2 θ^2)/(4 π^2) ==
7 + 115792089237316195423570985008687907853269984665640564039457584007908834\
671663 k + (2 π r – r θ)^3/(8 π^3) + ((2 π r – r θ) (2 π r – 2 π x – r θ))/(
2 π), k]
(Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2 == ((2 π r – r θ)/(2 π))^3 +
0 (2 π r – r θ)/(2 π) + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
0 = (2 π r – 2 π x – θ r) =
0 = θ r – (2 π r – 2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)]) =
0
(Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2 == ((2 π r – r θ)/(2 π))^3 +
0 (2 π r – r θ)/(2 π) + 7 +
k 11579208923731619542357098500868790785326998466564056403945758400790883467\
1663
θ r – (2 π r – 2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)])
Solve[(Sqrt[4 π r^2 θ – r^2 θ^2]/(
2 π))^2 == ((2 π r – r θ)/(
2 π))^3 + (θ r – (2 π r –
2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)])) (
2 π r – r θ)/(2 π) + 7 +
k 1157920892373161954235709850086879078532699846656405640394575840079088346\
71663, k]
{{k -> (-56 π^3 + 16 π^4 r^2 – 8 π^3 r^3 – 8 π^3 r Sqrt[r^2 (2 π – θ)^2] +
8 π^2 r^2 θ – 16 π^3 r^2 θ + 12 π^2 r^3 θ +
4 π^2 r Sqrt[r^2 (2 π – θ)^2] θ – 2 π r^2 θ^2 + 4 π^2 r^2 θ^2 –
6 π r^3 θ^2 +
r^3 \
θ^3)/(926336713898529563388567880069503262826159877325124512315660672063270677\
373304 π^3)}}
Solve[(Sqrt[4 π r^2 θ – r^2 θ^2]/(
2 π))^2 == ((2 π r – r θ)/(
2 π))^3 + (θ r – (2 π r –
2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)])) (
2 π r – r θ)/(2 π) + 7 +
k 1157920892373161954235709850086879078532699846656405640394575840079088346\
71663, r]
{{r -> (2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) + (4 2^(
1/3) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ + 6 π θ^2 –
θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3)) +
1/(3 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413253317\
30501069312 k π^9 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239759951\
91503207936 k π^8 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549699939\
89379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033133293\
26252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887424984\
97344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774849969\
9468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145708308\
289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132\
5331730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397\
5995191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496\
9993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331\
3329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874\
2498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748\
499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457\
08308289079208 k π^3 θ^6)^2))^(1/3)}, {r -> (2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 + I Sqrt[3]) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ +
6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 – I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6)^2))^(1/3)}, {r -> (2 (4 π^2 θ – π θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 – I Sqrt[3]) (4 π^2 θ – π θ^2)^2)/(3 (8 π^3 – 12 π^2 θ +
6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6)^2))^(1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 + I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 +
,(-256 (4 π^2 θ – π θ^2)^6 + (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 + 18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 – 1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6)^2))^(1/3)}, {r -> (
2 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 + 4 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) + (4 2^(
1/3) (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 + 4 π^2 θ^2)^2)/(3 (8 π^3 –
12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 –
163840 π^9 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)) +
1/(3 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413253317\
30501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239759951\
91503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549699939\
89379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033133293\
26252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887424984\
97344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774849969\
9468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145708308\
289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132\
5331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397\
5995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496\
9993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331\
3329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –

150066547651561789268947996571259528577837900126670170995137028874\
2498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748\
499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457\
08308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)}, {r -> (2 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 + 4 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 + I Sqrt[3]) (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^2)/(3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 –
163840 π^9 θ^3 – 91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 – I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 –
163840 π^9 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)}, {r -> (2 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 + 4 π^2 θ^2))/(
3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) – (2 2^(
1/3) (1 – I Sqrt[3]) (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^2)/(3 (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3) (-96768 π^9 –
160070984161665908553544529676010163816360426801781515728146164132533\
1730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
480212952484997725660633589028030491449081280405344547184438492397599\
5191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
600266190606247157075791986285038114311351600506680683980548115496999\
3989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
400177460404164771383861324190025409540901067004453789320365410331332\
9326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
150066547651561789268947996571259528577837900126670170995137028874249\
8497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
300133095303123578537895993142519057155675800253340341990274057748499\
699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
250110912752602982114913327618765880963063166877783618325228381457083\
08289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641\
325331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923\
975995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154\
969993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103\
313329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 –
163840 π^9 θ^3 – 91488 π^5 θ^4 –

1500665476515617892689479965712595285778379001266701709951370288\
742498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577\
48499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814\
5708308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)) –
1/(6 2^(
1/3) (8 π^3 – 12 π^2 θ + 6 π θ^2 – θ^3)) (1 + I Sqrt[3]) (-96768 π^9 –
1600709841616659085535445296760101638163604268017815157281461641325331\
730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +
4802129524849977256606335890280304914490812804053445471844384923975995\
191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
6002661906062471570757919862850381143113516005066806839805481154969993\
989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 + 245760 π^10 θ^2 +
242944 π^6 θ^3 +
4001774604041647713838613241900254095409010670044537893203654103313329\
326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 – 163840 π^9 θ^3 –
91488 π^5 θ^4 –
1500665476515617892689479965712595285778379001266701709951370288742498\
497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
3001330953031235785378959931425190571556758002533403419902740577484996\
99468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
2501109127526029821149133276187658809630631668777836183252283814570830\
8289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6 +
,(-256 (16 π^4 + 4 π^2 θ – 16 π^3 θ – π θ^2 +
4 π^2 θ^2)^6 + (-96768 π^9 –
16007098416166590855354452967601016381636042680178151572814616413\
25331730501069312 k π^9 + 65536 π^12 + 290304 π^8 θ +

48021295248499772566063358902803049144908128040534454718443849239\
75995191503207936 k π^8 θ + 49152 π^10 θ – 196608 π^11 θ – 362880 π^7 θ^2 –
60026619060624715707579198628503811431135160050668068398054811549\
69993989379009920 k π^7 θ^2 + 12288 π^8 θ^2 – 110592 π^9 θ^2 +
245760 π^10 θ^2 + 242944 π^6 θ^3 +
40017746040416477138386132419002540954090106700445378932036541033\
13329326252673280 k π^6 θ^3 – 18432 π^7 θ^3 + 98304 π^8 θ^3 –
163840 π^9 θ^3 – 91488 π^5 θ^4 –
15006654765156178926894799657125952857783790012667017099513702887\
42498497344752480 k π^5 θ^4 + 9984 π^6 θ^4 – 43008 π^7 θ^4 + 61440 π^8 θ^4 +
18336 π^4 θ^5 +
30013309530312357853789599314251905715567580025334034199027405774\
8499699468950496 k π^4 θ^5 – 2304 π^5 θ^5 + 9216 π^6 θ^5 – 12288 π^7 θ^5 –
1528 π^3 θ^6 –
25011091275260298211491332761876588096306316687778361832522838145\
708308289079208 k π^3 θ^6 + 192 π^4 θ^6 – 768 π^5 θ^6 + 1024 π^6 θ^6)^2))^(
1/3)}}
Solve[(2 π (2 π r – 2 π Sqrt[r^2 – (η)^2]))/θ^2 == (4 π r^2 – 2 r^2 θ)/(
2 Sqrt[4 π r^2 θ – r^2 θ^2]), r]
0 = (2 π (2 π r – 2 π Sqrt[r^2 – (η)^2]))/θ^2 – (4 π r^2 – 2 r^2 θ)/(
2 Sqrt[4 π r^2 θ – r^2 θ^2]) = 0
Solve[(2 π (2 π r – 2 π Sqrt[r^2 – (η)^2]))/θ^2 – (4 π r^2 – 2 r^2 θ)/(
2 Sqrt[
4 π r^2 θ – r^2 θ^2]) == (θ r – (2 π r – 2 π Sqrt[(r^2 – η^2)])) + (1 –
Sqrt[4 π θ – θ^2]/(2 π Sin[β])), r]
{{}}
Solve[(2 π (2 π r – 2 π Sqrt[r^2 – (η)^2]))/θ^2 – (4 π r^2 – 2 r^2 θ)/(
2 Sqrt[
4 π r^2 θ –
r^2 θ^2]) == (θ r – (2 π r –
2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)])) + (1 – Sqrt[
4 π θ – θ^2]/(2 π Sin[β])), η]
{{η -> -1/(
32 π^3) (,(512 π^4 r θ^2 – 1024 π^5 r^2 θ^2 +
512 π^4 r Sqrt[r^2 (2 π – θ)^2] θ^2 – 64 π^3 r^2 θ^3 +
512 π^4 r^2 θ^3 – 64 π^2 θ^4 + 256 π^3 r θ^4 + 48 π^2 r^2 θ^4 –
512 π^4 r^2 θ^4 – 128 π^2 Sqrt[r^2 (2 π – θ)^2] θ^4 +
256 π^3 r Sqrt[r^2 (2 π – θ)^2] θ^4 – 128 π^2 r θ^5 – 4 π r^2 θ^5 +
512 π^3 r^2 θ^5 – 128 π^2 r Sqrt[r^2 (2 π – θ)^2] θ^5 – r^2 θ^6 –
128 π^2 r^2 θ^6 – (r^2 θ^7)/(4 π – θ) +
256 π^4 r θ Sqrt[r^2 (4 π – θ) θ] –
64 π^3 r θ^2 Sqrt[r^2 (4 π – θ) θ] –
64 π^2 θ^3 Sqrt[r^2 (4 π – θ) θ] –
16 π^2 r θ^3 Sqrt[r^2 (4 π – θ) θ] +
128 π^3 r θ^3 Sqrt[r^2 (4 π – θ) θ] –
64 π^2 Sqrt[r^2 (2 π – θ)^2] θ^3 Sqrt[r^2 (4 π – θ) θ] +
16 π θ^4 Sqrt[r^2 (4 π – θ) θ] – 4 π r θ^4 Sqrt[r^2 (4 π – θ) θ] –
96 π^2 r θ^4 Sqrt[r^2 (4 π – θ) θ] +
16 π Sqrt[r^2 (2 π – θ)^2] θ^4 Sqrt[r^2 (4 π – θ) θ] +
4 θ^5 Sqrt[r^2 (4 π – θ) θ] – r θ^5 Sqrt[r^2 (4 π – θ) θ] +
8 π r θ^5 Sqrt[r^2 (4 π – θ) θ] +
4 Sqrt[r^2 (2 π – θ)^2] θ^5 Sqrt[r^2 (4 π – θ) θ] +
2 r θ^6 Sqrt[r^2 (4 π – θ) θ] + (4 θ^6 Sqrt[r^2 (4 π – θ) θ])/(
4 π – θ) – (r θ^6 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) + (
4 Sqrt[r^2 (2 π – θ)^2] θ^6 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) + (
2 r θ^7 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) –
256 π^3 r θ^2 Sqrt[(4 π – θ) θ] Csc[β] +
64 π θ^4 Sqrt[(4 π – θ) θ] Csc[β] –
128 π^2 r θ^4 Sqrt[(4 π – θ) θ] Csc[β] +
64 π Sqrt[r^2 (2 π – θ)^2] θ^4 Sqrt[(4 π – θ) θ] Csc[β] +
64 π r θ^5 Sqrt[(4 π – θ) θ] Csc[β] +
32 π θ^3 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β] –
8 θ^4 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β] – (
8 θ^5 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β])/(4 π – θ) –
64 π θ^5 Csc[β]^2 + 16 θ^6 Csc[β]^2))}, {η ->
1/(32 π^3) (,(512 π^4 r θ^2 – 1024 π^5 r^2 θ^2 +
512 π^4 r Sqrt[r^2 (2 π – θ)^2] θ^2 – 64 π^3 r^2 θ^3 +
512 π^4 r^2 θ^3 – 64 π^2 θ^4 + 256 π^3 r θ^4 + 48 π^2 r^2 θ^4 –
512 π^4 r^2 θ^4 – 128 π^2 Sqrt[r^2 (2 π – θ)^2] θ^4 +
256 π^3 r Sqrt[r^2 (2 π – θ)^2] θ^4 – 128 π^2 r θ^5 – 4 π r^2 θ^5 +
512 π^3 r^2 θ^5 – 128 π^2 r Sqrt[r^2 (2 π – θ)^2] θ^5 – r^2 θ^6 –
128 π^2 r^2 θ^6 – (r^2 θ^7)/(4 π – θ) +
256 π^4 r θ Sqrt[r^2 (4 π – θ) θ] –
64 π^3 r θ^2 Sqrt[r^2 (4 π – θ) θ] –
64 π^2 θ^3 Sqrt[r^2 (4 π – θ) θ] –
16 π^2 r θ^3 Sqrt[r^2 (4 π – θ) θ] +
128 π^3 r θ^3 Sqrt[r^2 (4 π – θ) θ] –
64 π^2 Sqrt[r^2 (2 π – θ)^2] θ^3 Sqrt[r^2 (4 π – θ) θ] +
16 π θ^4 Sqrt[r^2 (4 π – θ) θ] – 4 π r θ^4 Sqrt[r^2 (4 π – θ) θ] –
96 π^2 r θ^4 Sqrt[r^2 (4 π – θ) θ] +
16 π Sqrt[r^2 (2 π – θ)^2] θ^4 Sqrt[r^2 (4 π – θ) θ] +
4 θ^5 Sqrt[r^2 (4 π – θ) θ] – r θ^5 Sqrt[r^2 (4 π – θ) θ] +
8 π r θ^5 Sqrt[r^2 (4 π – θ) θ] +
4 Sqrt[r^2 (2 π – θ)^2] θ^5 Sqrt[r^2 (4 π – θ) θ] +
2 r θ^6 Sqrt[r^2 (4 π – θ) θ] + (4 θ^6 Sqrt[r^2 (4 π – θ) θ])/(
4 π – θ) – (r θ^6 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) + (
4 Sqrt[r^2 (2 π – θ)^2] θ^6 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) + (
2 r θ^7 Sqrt[r^2 (4 π – θ) θ])/(4 π – θ) –
256 π^3 r θ^2 Sqrt[(4 π – θ) θ] Csc[β] +
64 π θ^4 Sqrt[(4 π – θ) θ] Csc[β] –
128 π^2 r θ^4 Sqrt[(4 π – θ) θ] Csc[β] +
64 π Sqrt[r^2 (2 π – θ)^2] θ^4 Sqrt[(4 π – θ) θ] Csc[β] +
64 π r θ^5 Sqrt[(4 π – θ) θ] Csc[β] +
32 π θ^3 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β] –
8 θ^4 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β] – (
8 θ^5 Sqrt[(4 π – θ) θ] Sqrt[r^2 (4 π – θ) θ] Csc[β])/(4 π – θ) –
64 π θ^5 Csc[β]^2 + 16 θ^6 Csc[β]^2))}}

Solve[1 – Sqrt[4 π θ – θ^2]/(2 π Sin[β]) ==
θ r – (2 π r – 2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)]), r]
Solve[1 – (2 π Sin[β])/Sqrt[4 π θ – θ^2] ==
θ r – (2 π r – 2 π Sqrt[(r^2 – (Sqrt[4 π r^2 θ – r^2 θ^2]/(2 π))^2)]), r]

Share
Posted in Uncategorized | Leave a comment

Bitcoin Fat Finger Part Deux

http://www.reddit.com/r/Bitcoin/comments/2ib5hm/possible_mass_market_manipulation_by_chinese/

Share
Posted in Uncategorized | Leave a comment

Umbrella litecoin hot crypto currency… Spikehttps://bittrex.com/Market/?MarketName=BTC-ULTChttps://bittrex.com/Market/?MarketName=BTC-ULTChttps://bittrex.com/Market/?MarketName=BTC-ULTChttps://bittrex.com/Market/?MarketName=BTC-ULTChttps://bittrex.com/Market/?MarketName=BTC-ULTC

Share
Posted in Uncategorized | Leave a comment

Blockchain of Ideas; Blockchain of Mathematical Ingenuity; Blockchain of Complex Analysis and Algebraic Geometry

The system of a circle’s folding into a cone and all of the mysteries within is the centerpiece of today’s most advanced mathematical understanding of reality and is the perfect language for beginning the esoteric learning and seeking of true esoteric knowledge.

A blockchain of ideas is what we find. Each new concept, vision or equation of understanding/description (phenomenologically) that develops leads to the potential of another new idea, but the solving or mental discovery of the new idea is the creation of the next block in the blockchain of mathematical development. The only difference between this and the way Bitcoin is arranged is that the Mathematical blockchain of discovery never ends. There is never a final block, and the rewards continue to grow.

All the Best,

Parker Emmerson

Share
Posted in Uncategorized | Tagged , , , , , , , , , | Leave a comment

Bitcoin Fat Finger August 1st 2014 (8-1-14) or Massive Buy? Dark Pool Settlement? Bitcoin Trades over $4300.00 (BTC $7000+ eye witness)

Is Bitcoin poised for a massive gain or was the event on August 1st 2014 just a fat finger accident. Did massive amounts of bitcoin exchange hands at massive prices around 22:00 hours UST? Did Bitcoin hit an all time high on August 1st 2014 of $7328.00 with an average price per BTC of $4417.90 on extra heavy trading? At around 5:00 in the afternoon, I got an alert on my phone from BTC Avg http://www.bitcoinaverage.com triggered by Bitcoin passing its all time nominal high of $1280.00 per each on Bitcoinaverage.com. I looked at my phone, and I couldn’t believe it, bitcoin had just traded at over $7300.00. I then went to Bitcoinaverage.com for actual confirmation of the volume. I couldn’t believe it. The average BTC price had jumped to $4300.00 across exchanges. There was double the volume in a single trade for the whole day. Somebody had exchanged over 17,000 bitcoins. Bitstamp was not reporting totals to the bitcoinaverage.com. A dark pool settlement occurs mostly outside of an exchange, or if provided by an exchange, is supposed to remain secret. It looks as though somebody may have leaked just one of these kinds of transactions intentionally or by accident.

If it was an accident, which exchange reported the data? Why is nobody investigating this? Why am I, a little blogger, the only one covering this at all so as to really get to the bottom of what happened?

I knew this wouldn’t last for long if it were an accident, and I knew someone would try to cover their tracks if it wasn’t an accident. I captured the screenshot from my phone while it still lasted. Moments later, this phenomenon vanished.

See:

Bitcoin Price Spike Hits All Time High from Revealed Dark Pool?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Could dark pools be trading BTC on dark wallets and dark exchanges, unnoticed by the greater trading community? Yes, they could be. Could they slip up and let us know the real price of bitcoin when you need to buy 17,000 of them? Yes, they could have.

Could this just be a glitch? Perhaps, let’s examine the evidence.

If you needed to buy 17,000 BTC, how would you get it? Who would be there to sell it to you? Prices seem to have settled back after the massive, seemingly unnoticed spike in the price, but perhaps most traders did not notice the slip up from the dark pool, where Bitcoin could be trading at massive all time highs due to the real volume. I have seen no other mention of what happened today with the price, so I felt obliged to post. Could a major player in the financials be getting into bit coin, resulting in a massive spike?

Local BTC was trading at over $900.00 at the time, and the other clue is that Bitstamp was not reporting figures at the time of the trade, but somehow, the feed kept going into Bitcoinaverage.com. Many, many Local BTC traders peg their pricing to the BitStamp.net spot. This leads me to think that Bitstamp settled a massive trade for a big player at a high BTC cost relative to the market, and the market was left undisturbed. People really didn’t notice, because it was masked relatively well on most exchanges. The order books would have gone out of control entirely and spiked the price of BTC permanently on a trade like that, creating massive volatility in the markets. Here, we see the principle of phenomenological velocity, the canceling of the volume while the trade actually takes place. If traders are looking for more BTC velocity, then look no further. Buy bit coin now.

Flat all day compared to the massive spike

Flat all day compared to the massive spike

With the bitcoin price’s exceeding $4300 per each bitcoin, some even settling for over $7000.00 each, the relative volatility for the rest of the day looked flat. You can probably still see this if you download the iphone app, btcReport on iPhone. We can see from the chart, that the bitcoin average price actually hit $1261.2 today. https://bitcoinaverage.com/markets#USD still reports that Bitstamp has been unreachable for a long time.

Furthermore, we can see that as noted, at 22:00-22:04, a flash spike in BTC took place. No data is published during that time, as it was just exactly between the cracks of reported trading on the official ledger at bitcoinaverage.com.

 

 

 

 

Here, we see how the official ledger does not mention the trade of BTC, some of which cost over $7300.00 (this is only my eye-witness account, because before I had a chance to think about capturing it on my phone, the price had slipped down under $4300.00).

How would the math work out here? What kind of formula could have been used to determine the cost of bitcoin for a “dark pool” settlement. With an average cost of bitcoin reported in the above example (exhibit), let’s assume $1261.00 for the average cost of bitcoin including the “fat finger” BTC or, “dark pool” exposed bitcoin sale.  The reported number of bitcoins sold was about 17800 BTC. 17800 * 1261 = $22,445,800, but the “real” reported average BTC cost is assumed to be $600.00, or about $10,680,000 daily volume. The difference is $11,765,800. So, we know the price of the dark pool bitcoins was between $1200-$7300.00 each. Let’s assume the average of those two prices as the cost per bitcoin. That would be $4250.00 per BTC. This number is somewhat evidenced, because after the $7300.00 figure, the price came down to ~$4400.00 and then even lower to around $1280.00. This tentatively indicates that only about 2768.42353 bitcoins were sold in a lump sum.

Conclusion: Hold your bit coins. Buy more bitcoins. We could see this price revealed to the entirety of the BTC market within the coming months and at that point, at what price will Dark Pools be trading bit coin?

 

Was this leaked by a dark pool or just a fat finger?

Dark Pool trade settlement or fat finger?

 

Share
Posted in Bitcoin, financial, velocity | Tagged , , , , , , , , , , , , , | Leave a comment

Border Patrol = Cartels/Gangs

To whom it may concern:

It has come to my attention that people can freely come across the border from Mexico to America, but how can they make it?

The key here is that it’s cartel, gang, Mexican drug lords/hooligans that are the real border patrol. However, all it takes to get past them is about $500-$1000.00 cash.

Sometimes called Coyotes, these bands of marauders patrol the Mexican/American border and are the real border patrol. If you can’t pay these people, chances are you won’t get past them. They are incredibly numerous, and my contact in Mexico says that there is no way to get past them unless you pay.

You will also have to walk for six days (200 miles or more) through the dessert in order to make it to water and food. So, if you are a Mexican/immigrant and can pay $1000.00 and buy food and water, and carry it on your back for 6 days in the hot dessert, welcome to America, the door’s wide open.

All the Best,

iPhone

Share
Posted in Uncategorized | Leave a comment

By this post I claim original discovership on planet Earth (First) of this fact

©©©©©©©© PARKER EMMERSON ©©©©©©©©

Pi Approximation for the Aliens to Visit Me

This is the most accurate pi approximation in the known universe as discovered by Parker Emmerson, published 5-3-14

 

 

 

THIS IS A UNIQUE EXPRESSION, ONE THAT IS SO SO SO LARGE AND VAST THAT IT IS COPYRIGHTABLE BY ME. A STATEMENT, A PHRASE – COPYRIGHTED ON THIS DAY 5-3-14 by PARKER EMMERSON

1250442919173038756951025530092322508211776402059158997327709512/\
398028343281296922379798282700006993978049433204955287885364244 \
\[TildeTilde] \[Pi]

ANY ALIEN OR HUMAN WHO CAN SHOW ME THE DERIVATION OF THIS FACT CAN PROVE ME WRONG. OTHERWISE, THAT IS MY SECRET.

Share
Posted in Uncategorized | Tagged , , , , , , , , , | Leave a comment